C0₂ Cap and Trade—The Importance of Energy Efficiency to CO₂ Reduction

John P. Millhone, President Global Energy Metrics and Mosaics Advisor: Federation of American Scientists

AEI 08 Building Integration Solutions

The Argument

- The US and world face enormous challenges from a growing population, economy disparity, rising energy costs, and Climate Change.
- Changes in the building sector offer the fastest, cheapest, and most certain way to meet these challenges
- Cap and trade schemes, while getting most of the attention, rarely include the building sector
- New building technologies, including structural insulated panels (SIPs), have an important role to play in this historic drama

IPCC WG1 2007

Average T in 2001-2005 versus 1951-80 base, °C

Base Period = 1951-1980

Global Mean = 0.53

J. Hansen et al., PNAS 103: 14288-293 (2006)

The Oil Problem

Nations that **HAVE** oil (% of Global Reserves)

Saudi Arabia	26%
Iraq	11%
Kuwait	10%
Iran	9%
UAE	8%
Venezuela	6%
Russia	5%
Mexico	3%
Libya	3%
China	3%
Nigeria	2%
U.S.	2%

Nations that **NEED** oil (% of Global Consumption)

U.S.	26%
Japan	7%
China	6%
Germany	4%
Russia	3%
S. Korea	3%
France	3%
Italy	3%
Mexico	3%
Brazil	3%
Canada	3%
India	3%

Source: EIA International Energy Annual

Climate Change Reduction Goals for 2050

John McCain: **Barack Obama:**

70% 80%

Climate and Buildings

- Buildings are responsible for 1/3 of all energy related greenhouse gas emissions (~68% of electricity)
- Climate change will influence building energy use – more cooling, less heating
- Stabilizing climate will require ~3x reduction in energy use per square meter.

Potential Emission Reductions of CO₂ Emissions

Building Savings Underscored by McKinsey

Mckinsey Report 2007 http://www.mckinseyquarterly.com

Other benefits of building efficiency technology

- Energy imports reduced
- Economic benefits (costs can be lowered)
- Health benefits (indoor air quality– particularly important in developing countries)
- Increased occupant productivity (11% increases measured)
- Increased comfort and occupant control

Design Principles for Advanced Building Technologies

- Energy goals and other design objectives should be part of integrated engineering design:
 - Attractive/flexible designs
 - High energy efficiency
 - Low construction costs/ low maintenance costs
 - Safe for fire, earthquake, strong wind, insects, mould
 - High quality indoor air
 - Accessible
- Ensure reliable performance, quality control
- Proper building commissioning (can save 30% energy)

WHAT ARE SIPS?

SIPS ARE A COMPOSITE STRESSED-SKIN PANEL WITH AN INSULATING CORE OF RIGID FOAM -USUALLY EPS OR POLYURETHANE - AND "WORKING" SKINS MOST COMMONLY OF 7/16" THICK ORIENTED STRAND BOARD (OSB).

SIPS . ORG

VARIATIONS OF SIPS?

RIGID FOAM CORE MATERIALS MAY BE:

EXPANDED POLYSTYRENE (EPS)
 EXTRUDED POLYSTYRENE (XPS)
 POLYURETHANE
 POLYISOCYANURATE

Cut to specific design of structure

Oak Ridge National Laboratory Studies

4" SIP wall out performs 6" stud wall with R-19 fiberglass

* 2X6 @24" o.c.; with batts with rounded shoulders, 2% cavity voids, no compression around wiring, paper facer stapled to inside of stud

SIPS . ORG

SIPs Save Energy

- Less gaps to seal-
- test room is 15 times
 tighter than stick built
- 50-70% annual savings over MEC

Framing factor:

3% vs 15-25% stick built

WHOLE-ROOM AIR INFILTRATION, ORNL TESTING Lower cfm = higher comfort + lower energy cost

SIPS . ORG

End Use markets for SIPs 64.4 Million Square Feet

New Homes 45%

Four strategies for advancing the role of SIPs

- 1. Upgrade understanding of performance metrics (include high-rise and commercial buildings)
- 2. Stronger mandatory standards that recognize SIPs' superior, cost-competitive performance
- 3. Expanded research on material components, connections, hazard reduction, fire safety, high-rise and commercial applications
- 4. Market transformation: Cap and trade schemes must:
 - include building energy and environment actions,

- or else, mandatory standards, R&D and incentives must be combined to ensure a cost-minimization investment in reducing GHG emissions

The Bottom Line

Construction Technology, and SIPs in particular, are a key part of the solution to national energy and environmental challenges

For more information see: <u>www.fas.org</u> look for Buildings Technology

SIP R - VALUES

EPS Core Thickness	3 5/8"	5 5/8"	7 3/8"	9 3/8"	12 3/8"
R-Value @ 75° F	15.34	23.04	29.77	40.36	49.02
@ 40° F	16.57	26.26	32.28	43.80	53.23
@ 25° F	17.15	27.16	33.46	45.42	55.21

(Calculated R-Values) Calculated R-Values are for a generic Structural Insulated Panel, and include 2 sheets of 7/16" OSB at .69 per side. Type I, Expanded Polystyrene Foam that meets ASTM C – 578, calculated per ASHRAE published values at 3.85 per inch at 75° F, 4.19 at 40° F and 4.35 at 25°. Mean temperatures are established for differing regions, and occupancies. Please consult your local jurisdiction for interpretation of Regional or National Model Energy Code Requirements.